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Detailed experimental results are presented for the initial impact force on a sphere 
striking a horizontal liquid surface vertically a t  speeds in the range 1-3 m s-l. 
Results are discussed in terms of an impact drag coefficient. Liquids having viscosities 
in the range 10-3-102 Pa s have been studied. For low viscosities the results have 
been compared with the theoretical calculations of Shiffman & Spencer. Good agree- 
ment has been found in most respects; in particular the impact force varies as the 
square root of the depth for depths less than a tenth of the radius. The impact drag 
coefficient has also been studied through the transition from inertia to viscosity- 
dominated conditions. The variation of the impact drag coefficient is presented as a 
function of Reynolds number, and its variation in the range 5 x c Re < 5 x lo3 
is shown to resemble that of a fully immersed sphere moving steadily in a homogeneous 
fluid. 

1. Introduction 
Studies of the impact of a solid sphere on a horizontal liquid surface have been 

mainly of two kinds: those which are concerned with the formation of the cavity and 
splash, and those which are concerned with the force of impact on the sphere. In  the 
former category may be cited the work of Worthington (1908), Bell (1924), Richardson 
(1948), May (1951) and Abelson (1970, 1971). Gilbarg (1960) gives a review of cavity 
formation. 

It is with the second aspect, the impact force on the sphere, that this study is con- 
cerned. The first reported measurements of this force were by Aoki (1928) and by 
Watanabe (1934); the latter used quartz transducers to display directly on an oscillo- 
scope the force-time curves immediately following impact. Richardson ( 1  948) and 
May & Woodhull (1948, 1950) derived the force from position-time curves obtained 
from high-speed cinephotographs. They were concerned with a later stage of entry, 
when the sphere was fully submerged and accompanied by a well-formed cavity. The 
initial shock of impact may have important structural effects on the impinging body. 
These have been reviewed by Kornhauser (1964). A further effect which may occur 
following oblique impact is ricochet (Johnson & Daneshi 1978). 

Very few theoretical calculations have been made of the impact force; this is not 
surprising in view of the immense complexity of the hydrodynamics of the process. The 
most ambitious attempt relevant to this study was by Shiffman & Spencer (1945a, b) .  
I n  view of the obscurity of their work a summary is given in 5 2. Hu (1958) also 
discussed the problem. The case of oblique entry was treated by Trilling (1950). 
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FIGURE 1.  Geometry of sphere entry. 

Related studies of the simpler but still formidable problem of wedge entry have been 
reviewed by Hughes (1972). 

The objects of this study are twofold: first to  test the Shiffman-Spencer theory for 
the impact force during the very early stage of entry; and secondly to  present results 
on the force-time relationship for low-Reynolds-number conditions (Re < l), which 
have not been studied before. 

Results are most conveniently presented and discussed in terms of a dimensionless 
'impact drag coefficient ' C,, defined by analogy with the conventional drag coefficient 
for a body in a homogeneous fluid. Accordingly we write 

where F is the impact force, A is the cross-sectional area, p is the fluid density and v 
is the velocity of the body. It is important to  remember that C, depends on the depth 
of immersion in addition to any dependence on Reynolds number. 

F = &'&Apv2, (1) 

2. Summary of Schiffman-Spencer theory 
The following summary of the theory of Shiffman & Spencer (1945a, b )  is given 

because the original reports are not widely available. 
Consider a three-dimensional half-space filled with liquid of density p,  with a 

horizontal free surface. Initially at rest, it is struck by a sphere, radius R, moving with 
velocity v vertically downwards. Figure 1 shows the situation a short time after 
impact. The tip of the sphere has penetrated a distance B below the free surface. The 
liquid in the vicinity of the impact has been set in motion and a meniscus has partly 
formed. 

After the sphere has penetrated some distance further the liquid may separate from 
the sphere, leading to  cavity formation (Worthington 1908). However, the stage of 
the impact under consideration here is before separation has commenced; the depth 
B is less than half the radius R. 

The upward impact force F at any instant t may be expressed in terms of the virtual 
mass M of the liquid through the relation 

F = d ( M v ) / d t .  
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and therefore 

After integration this becomes 

where vo is the velocity of the sphere at impact. It follows that 

(d /dt )  [ ( M  +Mo) V] = 0. 

(M+M*)v = Move, 

Now v = d B / d t .  

Therefore, differentiating (3) and using (2), we find that 

Let 

and 

( d M / d B )  wi 
(1  +M/M0)3’  

m = M/(&rpR3) 

F =  

b = B/R. 

Then from (i), (4) it follows that 
d m l d b  c -  

d - (1 + M / M , ) ~ -  

One further dimensionless parameter is used, to express the effective specific gravity 
of the sphere relative to the liquid, namely 

Thus we may write drnldb 
- ( 1  + 3m/8a)3’ 

c -- (7) 

This shows that if the mass of the sphere is large compared to the mass of the liquid 
displaced the impact drag coefficient is to a good approximation equal to ( d m l d b ) .  

Shiffman & Spencer (1945a, b )  calculated m ( b )  by setting up an approximate 
velocity potential, employing the method of multi-valued dipoles and images. Further 
details of this method may be found in Shiffman & Spencer (1947). Corrections were 
made for the rise of the meniscus (‘wetting factor’) and the rise of the free surface 
(‘free surface correction’). 

The final results are shown graphically in figure 2. These show that the impact drag 
coefficient, and hence the impact force, rise rapidly to a maximum when the depth 
of penetration is between a tenth and a fifth of the radius (0.1 c b c 0.2). Thereafter 
it declines more gradually towards a value of between 0.25 and 0.3, when the cavity 
is fully formed (May & Woodhull 1948, 1950). The precise shape depends on the 
specific gravity v. Values of u may be made arbitrarily large by loading the sphere 
so that its total mass Mo is much greater than the displaced mass of water ($rR3p). 
Watanabe (1934) used a truncated sphere of large radius (15 em) SO that c was much 
less than 1.  This makes the comparison of experimental results with (7) complicated 
since both ( d m l d b )  and m are significant. I n  this study (T was made sufficiently large 
for the term involving m in the denominator of (7) to be neglected. 
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FIGURE 2. Theoretical value of impact drag coefficient C, aga.inst normalized 
depth of immersion b (after Shiffrnan & Spencer). 

The detailed behaviour of C, for b c 0.1 is not clearly shown in figure 2. Shiffman 
& Spencer give an explicit relationship for this region, 

C, = a,b*-a,b, (8) 

where a, = 5.40. 

(An error in the original paper leads to  a value of 6.62.) The coefficient a2 is not accu- 
rately given by the theory. For sufficiently small values of b,  equation (8) predicts 
that C, should vary as bi, so that on log/log scales a graph of C, against b should be 
linear with a slope of 4. An experimental test of this prediction and an experimental 
determination of the coefficients a,, a2 is one of the main objects of this study. 

3. Apparatus used for impact-force measurement 
3.1. General arrangement 

Figure 3 shows the general mechanical arrangement of the apparatus. The transducer 
assembly fell under controlled conditions onto the surface of the liquid, which was 
contained in a temperature-controlled oil bath. 

3.2. Transducer assembly 

The body used for studying the impact force was a steel hemisphere cut from a steel 
ball 25 mm in diameter. This formed the front section of a piezoelectric transducer 
assembly (figure 4). The active element was a modified lead zirconate titanate (PZT) 
disk 25 mm in diameter and 2 mm thick (Mullard PXE 5 type MB1068). The main 
body of the transducer consisted of a copper cylinder 38 mm in diameter and 62 mm 
long. The total mass was 0-665 kg, giving = 81 in (6) and (7). 
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FIGURE 3. General arrangement of apparatus: C ,  cooling coil; E, electromagnet; H, heater; 
HS, heater supply; L, laser; M, mirror; P, pulley; T, transducer; Th, thermometer; W, counter- 
weight. 
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FIGURE 4. Transducer assembly. C, copper cylinder; L, coaxial lead ; 
P, piezoelectric disk ; S, steel hemisphere. 
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Electrical contact with the front face of the PZT disk was made through an  axial 
hole. The capacitance of the transducer and cable was measured as 3.9 n F  a t  fre- 
quencies well below fundamental resonance ( N 35 kHz). 

3.3. Control of the impact velocity 

The transducer assembly was suspended by means of a thread, which ran over a pulley 
to a counterweight. The purpose of this was to reduce the acceleration of the falling 
body t o  enable the impact velocity to  be controlled in the range 0.5-3 m s-l by re- 
leasing it from heights h in the range 20-50 cm. The height h was set precisely with 
the aid of a laser beam and mirror scale. The motion was arrested before the top of 
the hemisphere had penetrated below the free surface, in order to  avoid excessive 
take-up of liquid by the transducer assembly. Thus the maximum normalized depth 
which could be studied was b = 1.  I n  practice the limit was lower than this because 
the rising meniscus shorted out the transducer when b reached between 0.5 and 1.  

The impact velocity was calculated using the relation 

Vo = (2ah)4 

where the acceleration a could be varied from 1 m s - ~  to  6 m s - ~  by adjusting the 
counterweight. Strictly speaking allowance should be made for the change in impact 
velocity during entry. However, in all the measurements reported here the velocity 
remained effectively constant, the maximum change being well below 1 yo even for 
the most viscous liquid (Moghisi 1979). 

3.4. Liquids used for the impact-force measurements 

The liquids were contained in a glass tank 20 cm high, with a base 16 x 10 cm. The 
walls were 5 mm thick. The depth of liquid was about 15 cm, requiring a volume of 
some 2.4 litres. The range of viscosity of the liquids used was from to - lo2 Pa s. 
This was achieved by the use of mixtures of water and Golden Syrup, and by varying 
the temperature between 15 "C and 30 "C. The viscosity of each liquid used was 
measured at the appropriate temperature using either an Ostwald-type U-tube visco- 
meter or a falling-sphere viscometer, in accordance with BS 188. The densities were 
also measured. 

3.5. Signal detection and recording 

The electrical circuit is shown in figure 5. The transducer output was connected to a 
transient recorder (Datalab DL 905). The decade capacitor unit was connected across 
the input terminals in order to increase the time constant of the input circuit. For 
all the measurements reported here the total input capacitance was 50 n F  and the 
input resistance was 1 M a ,  giving a time constant of 50 ms. Since the longest time 
involved in the measurement of impact force was about 1 ms any distortion of the 
signal due to leakage across the input circuit has been neglected. The transient re- 
corder output was monitored with an oscilloscope and displayed on a chart recorder 
for analysis. 

3.6. System calibration 

The chart recorder trace is a linearly scaled representation of the force-time curve. 
I n  order to derive absolute values of force and time from the trace it was necessary 
to know the calibration factors of the x and y scales. These may be defined through 

the relations x = X t ,  y =  Y F ,  
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FIGURE 6. Typical force-time curves. The force scale (vertical) is in arbitrary units and is not 
the same in each case. 

(4 ( b )  (4 (4 
Impact velocity (m s-1) 0.73 1.87 1.39 2.43 
Viscosity (Pa s) 0.001 0.008 1.1 0.001 

where X is the factor relating chart length to real time and Y is the factor relating 
chart width to force; X may be easily and accurately derived from the transient 
recorder data. The crystal-controlled timebase is accurately known. The length of 
chart corresponding to this is clearly recognizable because a sharp step in the output 
occurs at  the start and finish of the plot cycle. Thus the chart length corresponding to 
the timebase may be measured directly from the chart. Knowledge of the plot time 
and chart speed are not required. 

Determination of the force calibration factor Y is less straightforward. An absolute 
calibration method was devised, based on the impulse produced by a swinging pendu- 
lum. The method has been described in detail elsewhere (Moghisi & Squire 1980). 
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FIGURE 7. Impact force P against normalized depth b with impact velocity as parameter. Curves 
1-3 ( A )  are for viscosity of 0.008 Pa s ;  curves 4-7 ( B )  are for viscosity of 20 Pa s. Impact 
velocities in m s-1 as follows: (1) 0.97, (2) 1.10, (3) 1.30, (4) 0.95, ( 5 )  1-26, (6) 1.41, (7)  1.56. 
Solid lines are visual interpolations drawn for guidance. 

4. Results 
4.1. Typical force-time curves 

Some selected force-time curves are shown in figures B(a)-(d). These have been 
chosen merely to illustrate the variety of curves that may be obtained as the impact 
velocity and viscosity are varied. Figure 6 (a )  shows that for sufficiently low impact 
velocities in water ( c 1 m s-l) the force rises without a marked sudden onset. Figure 
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FIGURE 9. Impact force F against impact velocity v at  a normalized depth 6 = 0.01, with 
viscosity as parameter. Viscosity values in Pa s: (1) 0.001, (2) 1 .1 ,  (3) 22.5, (4) 26, (5) 82. Slopes 
of log plots are: (1) 1.97, (2) 1.47, (3) 1.24, (4) 1.16, (5) 1.09. 

6 ( b )  shows the behaviour typical of impact velocities between 1 and 3 m s-l; there 
is an initial sudden rise followed by a more gradual rise to  the maximum, after which 
the force decreases much more gradually. The maximum force occurs very soon after 
entry: in this case some 1.5 ms after initial impact, at which time the tip of the sphere 
has penetrated a distance equal to about one fifth the radius ( b  N 0.2). This is consis- 
tent with the general behaviour predicted by the Shiffman-Spencer model and shown 
in figure 2. 

I n  figure 6 ( c )  the time base is shorter and some small oscillations may be seen on 
the rising edge. These are due to ringing of the transducer and may be removed by 
filtering if required. This is shown in figure 6 ( d ) ,  which was obtained with a low-pass 
filter inserted between the transducer and transient recorder (Barr and Stroud type 
EP3-06, 30 kHz cut-off, 24 dB per octave). Figures 6(c)  and (d )  are typical of the 
force-time curves used to derive the impact drag coefficient. 
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FIGURE 10. Coefficient a,, used in equation ( 8 )  to calculate impact drag coefficient, 
against viscosity. The broken lines are drawn for guidance. 

4.2. Impact force as a function of depth and velocity 

According to (1) and (8) the initial impact force should vary as b*, where the nor- 
malized depth b is defined in (5). Thus log/log plots of impact force F against b should 
be linear for b < 1. Examples of such plots are shown in figure 7;  there it will be noted 
that, except for the lowest velocity of impact with water, the results conform closely 
to the b* dependence for b 5 0.1. Results for water over a wider range of depth are 
shown in figure 8 in terms of the impact drag coefficient C,  defined in (1). 

The Shiffman-Spencer theory predicts that C, is independent of velocity. According 
to ( 1 )  it  follows that F should vary as v2. Graphs of F against v on log/log scales are 
shown in figure 9. These were derived from graphs like those shown in figure 7 by 
drawing the ordinate b = 0.01 and plotting the points of intersection with the families 
of lines for each value of viscosity. The choice of b = 0.01 is arbitrary; any value in 
the range 0.005-0.1 would be appropriate. Since the force varies as b* (figure 7) the 
choice of b = 0.01 makes scaling convenient. 

The most significant point to note in figure 9 is the change in the velocity dependence 
of force as the viscosity increases. For low viscosity F cc v2, whereas for high viscosity 
P ccv. The Shiffman-Spencer theory is only applicable in the inviscid limit, and is 
therefore consistent with these results. 

4.3. Variation of impact drag coeficient with viscosity 

The change in the velocity dependence of drag force with viscosity has already been 
indicated in figure 9. Figure 7 shows that over the whole range of viscosity studied 
the impact force varies as b )  for b < 1. It is possible therefore to describe the initial 
impact force by ( 1 )  taking for C,  the first term in (8); i.e. 

C, = a,b& (b  < 1) .  

Figure 10 shows the results calculated on this basis; the coefficient a, is plotted against 
viscosity. 
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FIQURE 11. C,/b* against b* for water, with impact velocities in the range 1-2-2.8 m s-l. The 
linearity is a test of (9). The least-squares straight line is shown (ignoring four points at lower 
right). The intercept is a, and the slope is - u2. 

5. Analysis and discussion 
5.1. Impact drag coefficient as a function of depth 

The first objective of this work has been to test the Shiffman-Spencer theory, in 
particular the relationship (8) between impact drag coefficient C, and normalized 
depth of immersion 6 :  

C, = a,b*-a,b.  

Strong support for the b* term is given by figures 7 and 8. The data for water in figures 
7 and 8 have been analysed in two ways to extract values of the coefficients a, and a2, 
and to test the functionality. 

First it ha5 been assumed that (8) is of the correct form, so that after division by b* 
it may be written 

Thus a graph of C,lb* against b* should be linear, with slope ( -a,) and intercept a,. 
Figure 11 shows the resulting plot over the range 0.005 < b < 0.275, so it includes 
data up to and slightly beyond the peak in C, (figure 8). Apart from the four points 
at  the lower right (b > 0.18) the data may be reasonably fitted by a straight line. 
The least-squares fit to the remaining 42 points (regressing y on x) gives 

C,/b* = a,-a,b*. (9) 

a, = 5.22 +_ 0.10, a2 = 5.49 f 0.43, 

with 99 % confidence. This line is shown in figure 11.  It is clear that for b > 0.18 
higher-order terms need to be added to (9). 

In  the second method of analysis it is not assumed that the powers of b in (8) are 
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necessarily 9 and 1 ;  instead they are treated as adjustable parameters p and q. We 
write 

C, = a, b p  - a2 bq. 

This is now a nonlinear regression problem. It has been solved iteratively, using initial 
values of a, = 5.22 and p = 0.5 as obtained previously. The results are 

a, = 5.28 & 0.03, 

p = 0.503 0.008, q = 1-01 & 0.05, 

a2 = 5.71 & 0-16, 

with 99 yo confidence. The powers p and q do not differ significantly from 8 and 1 
respectively, and the values of a,, a2 obtained by the two methods of analysis agree 
within their respective limits. We may reasonably conclude that (8) gives an adequate 
description of the impact drag coefficient for b < 0.18, which includes the whole of 
the rising portion of the C,(b) curve. 

The value of a, calculated here is very close to the value of 5.40 calculated theoretic- 
ally by Shiffman & Spencer (see 3 2 ) ,  perhaps fortuitously so in view of the difficulty 
in calculating the wetting factor. 

It should be pointed out, however, that, if these values of a, and a2 are used to 
calculate the value of b for which C, is a maximum, the result is not in close agreement 
with the experimentally observed value. The value of a2 differs substantially from 
the value of 22 given by Shiffman & Spencer. However, that value was derived from 
less precise data of Watanabe (1934). 

5.2. Impact drag coeficient as a function of Reynolds number 

It is rather remarkable that the b* dependence of C, observed for low viscosity appears 
to be maintained over the whole range of viscosity. This may be seen in figure 7. On 
the other hand, figure 9 shows that the velocity dependence of impact force varies 
with viscosity. This is suggestive of the drag behaviour of a sphere moving at  constant 
velocity in a homogeneous fluid (e.g. Massey 1979). In that case, at  i low Reynolds 
number Stokes’ law gives 

where 7 is the liquid viscosity. Alternatively, if the more general form 
force be retained, the drag coefficient CD must be written as 

F = 6nR7~,  

CD = 24/Re, 

where Re = dpv/q, 

1)  for the drag 

(11)  

the Reynolds number; d is a characteristic length of the body, in the case of a fully 
immersed sphere its diameter. However, for a partly immersed sphere the full diameter 
is not an appropriate parameter because the liquid ‘does not know’ any dimension 
of the sphere above the surface. It is more realistic to take the diameter of the circle 
of contact (ignoring wetting), shown in figure 1 .  This is given by 

d = 2R(2b)3 ( b  < 1) ;  

for example, for b = 0-01 and 2R = 25 mm, d = 3.54 mm. Substituting this value of 
d into ( 1  l ) ,  with v = 1 m s-l and values of 7 and p for water, we find 

Re - 3.5 x 1 0 3 .  
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FIGURE 12. Impact drag coefficient C, against Reynolds number Re a t  a normalized depth 
b = 0.0 1. Experimental points from this study are shown as open circles. The continuous line 
shows the drag coefficient of a sphere in a homogeneous fluid. At low Re both drag coefficients 
vary as 1/Re. 

The results are shown in figure 12, in which the impact drag coefficient has been 
plotted against Reynolds number for b = 0.01, together with the corresponding curve 
for the fully immersed sphere (Massey 1979). It should be borne in mind in comparing 
the drag behaviour for the two cases that C ,  and Re both depend on b, and so by 
choosing different values of b the data may be shifted horizontally and vertically to  
some extent. 

6. Conclusions 
The impact drag force on a sphere striking a liquid surface has been measured at 

depths up to about a quarter of the radius (0  < b < 0.25) and for impact velocities 
between 1 and 3 m s-1. For b c 0.18 the force may be adequately described by an 
impact drag coefficient C, whose value is given by 

C, = a,b*-a,b, 

in accordance with calculations by Shiffman & Spencer. The value of a, found for 
water was 5.22 & 0.10, compared with the calculated value of 5.40. The value of a2 
found €or water was 5-49 & 0.43, compared with a value of 22 deduced by Shiffman & 
Spencer from earlier measurements by Watanabe. 

The impact drag coefficient has also been studied over a wide range of viscosity. 
It has been found that, for b < 1, C, cc b4, and the dependence of Cd on Reynolds 
number in the range 0.05 < Re < 5 x lo3 resembles that of a sphere in a homogeneous 
fluid. 
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